
Coaty

A Framework for

Collaborative IoT
Siemens Technology Research

Restricted | © Siemens 2020 | T RDA IOT | 2020-12

Market shows a clear trend towards systems collaborating independently
and autonomously as self-organizing system of systems

Page 2

decentralized - non-hierarchical

IoT network

cloud-centric - hierarchical

IoT network

Gateway

Sensor

Edge

Cloud

Application

Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Demand of collaborative smart autonomous systems
identified across all major industrial domains

Page 3

Industry Energy Mobility Building Logistics

Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Most prominent autonomous ’Systems’ acting as ’System of Systems’
Interacting and collaborating humans

Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12Page 4

Designing a collaboration framework for smart autonomous systems

Page 5 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Interaction of

Smart

Autonomous

Systems

• Event-based interaction of system components

• Data-centric not device-centric paradigm

• Publish/Subscribe messaging

Any-to-Any

Communication

Programmability

Collaboration

Functions

Cross-Platform

Deployments

Loose Coupling

• Communication patterns on top of pub/sub transport layer

• One-way (pub/sub) and two-way (request/response) patterns

• Many-to-many communication for different types of interaction

• Modular and extendable software framework

• Asynchronous event handling through reactive programming

• Building blocks

• Context specific routing of information flows

• Negotiation and delegation mechanisms

• Consensus finding mechanisms

• Extensibility by defined communication protocol based on standards

• Availability for multiple types of deployment

Coaty - The framework for collaborative IoT

Page 6 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Implementation of interaction and communication foundation

for smart autonomous systems in distributed, decentralized applications

Provides software framework for data-centric agent interaction with loosely coupled

systems, any-to-any communication, and smooth handling of asynchronous events

Provides collaboration capabilities in a middleware layer

on top of transport protocols and OS layer / stacks

Applicable to the full scale of potential deployments of agents from Cloud, Edge,

Smartphones, Wearables, Browser, etc.

Open Source framework powered by Siemens (https://coaty.io)

1

2

3

4

5

High-level system design
Collaborative application based on Coaty

Page 7 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Agent #1

Collaboration Framework

Collaboration foundation

Agent communication foundation

Agent Applications
- e.g. decentralized task allocation

Adapters & Connectors to external systems

System and Device Capabilities
(Persistence/DB, Control, Visualization etc.)

Coaty Network
Loosely coupled pub/sub (with message broker or brokerless)

Data-centric communication via typed object model

Other Agents #5..n
- Complex IoT devices

- User Interfaces

- Edge Devices

- Cloud Services

- Sensors

Agents #2

Agents #3

Agents #4

Coaty – Communication foundation
Loose coupling of systems and data centric paradigm

Page 8 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Publish-Subscribe Messaging

(e.g. MQTT, WAMP, libp2p)

Request-Response

(e.g. REST, RPC)

Two-way communication

One response per request

No many-to-many communication

Strongly coupled endpoints
(endpoints know about each other)

Endpoint 1 Endpoint 2

Endpoint 3

request

response

Endpoint

1..n
Endpoint 2

Endpoint 3

Message

Broker

No two-way communication

No response

Many-to-many communication

Loosely coupled endpoints
(endpoints do not know about each other)

Two-way communication

Multiple responses per request over time
(even from the same endpoint)

Many-to-many communication

Loosely coupled endpoints
(endpoints do not know about each other)

Endpoint

1..n

Endpoint 2

Endpoint 3

Exchangeable open-standard

messaging protocol

(MQTT, WAMP, libp2p, …)

Message

Broker

Coaty – Communication event patterns for system interaction

Page 9 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Coaty object model
An opinionated set of core object types to be used or extended by applications

Restricted | © Siemens 20XX | Author | Department | YYYY-MM-DDPage 10

Supports discovery, distribution, sharing,

and persistence

• Objects consist of attribute-value pairs

that model state but no behavior

• Objects are uniquely identified without

central coordination by a Version 4 UUID

• Cross-component, cross-platform

representation in JSON format

• Object types form a hierarchy defined by

Interfaces

• Framework-supplied core object types

are extensible by applications

• Communicated object shape is schema

validated against interface definition

• Schemaless persistence in NoSQL and

SQL data stores

<<interface>> CoatyObject

{ coreType: "CoatyObject" | "Identity" | "IoSource" | "IoActor" | ... ;

objectType: string;

name: string;

objectId: Uuid;

externalId?: string;

parentObjectId?: Uuid;

locationId?: Uuid;

isDeactivated?: boolean;
}

Annotation IoSource IoActor Snapshot UserTask

<<interface>> SupportTask : Task

{ coreType: "Task"

objectType: "com.siemens.myapp.SupportTask"

...

category: SupportTaskCategory,

urgencyLevel: SupportTaskUrgency }

Log

Identity Location

Publish
Resolve
Event

Coaty event pattern example – Discover-Resolve
“Discover information for an external ID encoded in a QR code”

Page 11

// QR Code of asset

const externalId = "00000042";

// Publish a Discover event and observe first Resolve event response

this.communicationManager

.publishDiscover(DiscoverEvent.withExternalId(this.identity, externalId))

.pipe(first(), map(event => event.eventData.object), timeout(5000))

.subscribe(

object => {

// Handle object of Resolve response event

},

error => {

// No response has been received within the given timeout period

this.logError(error, "Failed to discover external ID");

});

// Observe Discover events and respond with a Resolve event

this.communicationManager

.observeDiscover(this.identity)

.pipe(filter(event => event.eventData.isDiscoveringExternalId))

.subscribe(event => {

// Agent-specific lookup of an object with given external ID.

const object = findObjectWithExternalId(event.eventData.externalId);

// Respond with found object in Resolve event

event.resolve(ResolveEvent.withObject(this.identity, object));

});

Publish
Discover

Event

Observe
Discover

Event

Look up
object

Handle
Resolve
Event

Coaty

Agent

2

Coaty

Agent

1

C
o

a
ty

 A
g
e

n
t
1

C
o
a

ty
 A

g
e

n
t
2

Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Collaborative IoT applications
Two examples

Page 12

Dynamically associate information source and

actors based on context information

Example Use Cases:

• Multi-device HMIs

• Information routing between collaborating

machines in manufacturing

• Smart grid information routing based on

physical reconfiguration

Dynamic Context-Based

Information Routing

Resource Allocations

in Resource Networks

Dynamic decentralized resource negotiation and

allocation in distributed systems

Example Use Cases:

• Transport job negotiation of AGVs in self-

organizing production and ware-house

logistics with heterogeneous fleets

• Self organizing fleet management with a

maximum of flexibility and scalability

Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Dynamic context-based information routing
Coaty IO Routing

Page 13 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

IoRouting

IoContext “A” State #2

IO Routing

IoContext “A” State #1

Agent #1
w/ IoSource

Agent #2
w/ IoSource

Agent #3
w/ IoSource

Agent #4
w/ IoActor

Agent #5
w/ IoActor

Agent #6
w/ IoActor

• Coaty agents can have any number of IoSource
(Information Source) and IoActor (Information

Consumer).

• IoSource and IoActor are part of a named shared,

distributed IoContext.

• An IO Routing component manages information routing

for one IoContext based on a rule engine; application-

defined rules determine the association between

IoSource and IoActor of the different agents.

• On IoContext state changes, the IO Routing

component uses Coaty ASSOCIATE event pattern to

update publication and subscription topics of IoSources
and IoActors of the agents.

Note: Detailed implementation example available in Coaty 2.0 developer guides

Dynamic context-based information routing
Coaty IO Routing

Page 14 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

IO Routing

IoContext “A” State #2

Agent #1
w/ IoSource

Agent #2
w/ IoSource

Agent #3
w/ IoSource

Agent #4
w/ IoActor

Agent #5
w/ IoActor

Agent #6
w/ IoActor

Note: Detailed implementation example available in Coaty 2.0 developer guides

• Coaty agents can have any number of IoSource
(Information Source) and IoActor (Information

Consumer).

• IoSource and IoActor are part of a named shared,

distributed IoContext.

• An IO Routing component manages information routing

for one IoContext based on a rule engine; application-

defined rules determine the association between

IoSource and IoActor of the different agents.

• On IoContext state changes, the IO Routing

component uses Coaty ASSOCIATE event pattern to

update publication and subscription topics of IoSources
and IoActors of the agents.

Resource allocations in resource networks
Example: AGV transport task assignments

Page 15 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

TransportTask

Requester

AGV
Central

MES

Workspace
10..*

0..*

10..*

1

1

has tasks in

assigns tasks

o
p
e
ra

te
s

in
0..*

Is
s
u
e
s

ta
s
k
s

executes

assigned tasks

Optimizes entire

scenario

Self-organizing fleet managementTodays central fleet management

TransportTask

Requester

AGV

Workspace
10..*

10..*

has tasks in

o
p
e
ra

te
s

in

0..*

1. self-manages task

assignments with

other AGVS

2. executes assigned

tasks

MES
0..*0..*

monitors &

optimizes

Optimizes entire

scenario

Coaty – How you get started

Page 16 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Get in contact with us

coaty.team@gmail.com

https://coaty.io

https://github.com/coatyio

https://coaty.io/
https://github.com/coatyio

