Coaty IR T
A Framework for :,;; |

Collaborative loT . @ gt
Siemens Technology Research . :

SIEMENS

Market shows a clear trend towards systems collaborating independently
and autonomously as self-organizing system of systems

20:
Application ol
Cloud

Edge

IR Rhend BN R
2 WA ARAN
Sensor 00 06006 006 000

cloud-centric - hierarchical
loT network

Page 2 Unrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Vo s
N &
N
° N
& o
[]
202 .0’
decentralized - non-hierarchical
0T network
SIEMENS

Demand of co i
llaborative sm
: i art auton
id o omous s m
entified across all major industrial domains ySte >

Industry
_ Mobility

m) E
i 2
- " Q’\

Logisti -
SUSEES —"

\/

:_. " v m e RRTR
»

‘ ‘ Autonomous Agents and Things
Over the next five years we will evolve
to a post-app world, with intelligent
agents delivering dynamic and
contextual actions and interfaces. , ,

Source: Gartner, © 2018 Gartner, Inc. and/or its affiliates. All rights reserved

Page i i
ge3 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

SIEMENS

Most prominent autonomous 'Systems’ acting as 'System of Systems’
Interacting and collaborating humans

a8l =

i
=
]
: 100
-

=38

.1'mmmb‘
b 2 WA

SIEMENS

Page 4 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Designing a collaboration framework for smart autonomous systems

Interaction of Loose Coupling
Smart
Autonomous

Systems Any-to-Any

Communication

Programmability

Collaboration
Functions

Cross-Platform
Deployments

Page 5 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Event-based interaction of system components
Data-centric not device-centric paradigm
Publish/Subscribe messaging

Communication patterns on top of pub/sub transport layer
One-way (pub/sub) and two-way (request/response) patterns
Many-to-many communication for different types of interaction

Modular and extendable software framework
Asynchronous event handling through reactive programming
Building blocks

Context specific routing of information flows

Negotiation and delegation mechanisms
Consensus finding mechanisms

Extensibility by defined communication protocol based on standards
Availability for multiple types of deployment

SIEMENS

Coaty - The framework for collaborative IoT

Implementation of interaction and communication foundation
for smart autonomous systems in distributed, decentralized applications

Provides software framework for data-centric agent interaction with loosely coupled
systems, any-to-any communication, and smooth handling of asynchronous events

Provides collaboration capabilities in a middleware layer
on top of transport protocols and OS layer / stacks

Applicable to the full scale of potential deployments of agents from Cloud, Edge,
Smartphones, Wearables, Browser, etc.

Page 6

Open Source framework powered by Siemens (https://coaty.io)

Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

(Joaty

SIEMENS

High-level system design
Collaborative application based on Coaty

Page 7

Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Agent #1

." Agents #2 ()

A Apibbls bt
43 I——

Adapters & Connectors to external systems

System and Device Capabilities
(Persistence/DB, Control, Visualization etc.)

Other Agents #5..n

Complex loT devices
User Interfaces
Edge Devices

Cloud Services
Sensors

2
<
&

Coaty Network

Loosely coupled pub/sub (with message broker or brokerless)
Data-centric communication via typed object model

SIEMENS

Coaty — Communication fou

Loose coupling of systems and data centric paradigm

Request-Response
(e.g. REST, RPC)

request
d >
-
response

Endpoint 1

Endpoint 2

Endpoint 3

Two-way communication

ndation

Publish-Subscribe Messaging
(e.g. MQTT, WAMP, libp2p)

L,

’ %, .0 ’
%
4 Q\p\\"

Endpoint

Endpoint 2
1.n
L,
¢,
o 6/,&6
Message
Broker ’
Endpoint 3

No two-way communication

(Joaty

/‘e X
’ qU@St 0‘065 S ’
Vf&’s\ = 5
Endpoint o”ses ¢ W J (?»(’Q Endpoint 2
1.n ‘)
®,

I,

o) e
Message m
Broker ’7593 ’

) Endpoint 3

Exchangeable open-standard
messaging protocol
(MQTT, WAMP, libp2p, ...

Two-way communication

One response per request

No response

Multiple responses per request over time
(even from the same endpoint)

No many-to-many communication

Many-to-many communication

Many-to-many communication

Strongly coupled endpoints
(endpoints know about each other)

Page 8 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Loosely coupled endpoints
(endpoints do not know about each other)

Loosely coupled endpoints
(endpoints do not know about each other)

SIEMENS

Coaty — Communication event patterns for system interaction

One-way communication

Two-way request-response communication

Advertise

* an object: multicast an object to parties interested
in objects of a specific core or object type.

Deadvertise

* an object by its unigue I1D: notify subscribers when
capability is no longer available; for abnormal
disconnection, last will concept can be implemented
by sending this event.

Channel

* Multicast objects to parties interested in any type
of objects delivered through a channel with a
specific channel identifier.

Associate

* Used by 10 routing internally to dynamically
associate [disassociate 10 sources with 10 actors.

loValue

Send 10 values from a publishing 10 source to
associated |0 actors.

Page 9 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Discover — Resolve

* Discover an object and/or related objects by external ID,
unique ID, or object type, and receive responses by
Resolve events,

Query — Retrieve

= Query objects by specifying selection and ordering
criteria, receive responses by Retrieve events.

Update — Complete

« Request or suggest an object update and receive
accomplishments by Complete events.

Call = Return

* Request execution of a remote operation and receive
results by Return events.

SIEMENS

Coaty object model
An opinionated set of core object types to be used or extended by applications

Supports discovery, distribution, sharing,

<<interface>> CoatyObject and persistence

{ coreType: "CoatyObject" | "Identity" | "IoSource" | "IoActor" | ... ;
objectType: string; * ObJeCtS consist of attribute-value pairs
name: string; that model state but no behavior
objectId: Uuid;
externalld?: string; « Objects are uniquely identified without
parentObjectId?: Uuid; . . .
locationId?: Uuid; central coordination by a Version 4 UUID
isDeactivated?: boolean;

} » Cross-component, cross-platform

representation in JSON format

' * Object types form a hierarchy defined by
r T T Y Y 1 Interfaces

<<interface>> SupportTask : Task

Framework-supplied core object types
are extensible by applications

{ coreType: "Task" « Communicated object shape is schema
objectType: "com.siemens.myapp.SupportTask® validated against interface definition
category: SupportTaskcategory, « Schemaless persistence in NoSQL and

urgencylevel: SupportTaskUrgency }

SQL data stores

Page 10 Restricted | © Siemens 20XX | Author | Department | YYYY-MM-DD SI E M E N S

Coaty event pattern example — Discover-Resolve
“Discover information for an external ID encoded in a QR code”

// QR Code of asset
const externalld = "©0000042";

Discover
Event

Coaty Coaty
Agent Agent
// Publish a Discover event and observe first Resolve event response
= this.communicationManager
= .publishDiscover(DiscoverEvent.withExternalId(this.identity, externalld)) Observe
o .pipe(first(), map(event => event.eventData.object), timeout(5000)) Discover
< .subscribe(Publish Event
> .
T object => {
o}
O

// Handle object of Resolve response event

}s

error => {

// No response has been received within the given timeout period
this.logError(error, "Failed to discover external ID");

ok

Publish
; . Resolve
// Observe Discover events and respond with a Resolve event
this.communicationManager

Event
.observeDiscover(this.identity)

.pipe(filter(event => event.eventData.isDiscoveringExternalld))
.subscribe(event => {

Handle
Resolve
Event

// Agent-specific Lookup of an object with given external ID.

const object = findObjectWithExternalId(event.eventData.externalld);
// Respond with found object in Resolve event

event.resolve(ResolveEvent.withObject(this.identity, object));

N
+—
c
Q
(@]
<
)
-—
@©
o
O

1

TSP

SIEMENS

Page 11 ynrestricted | © Siemens 2020 | T RDA IOT | 2020-12

Collaborative IoT applications
Two examples

Resource Allocations
in Resource Networks

(S bedbtivt

Dynamically associate information source and Dynamic decentralized resource negotiation and

actors based on context information allocation in distributed systems

Example Use Cases: Example Use Cases:

* Multi-device HMIs « Transport job negotiation of AGVs in self-

- Information routing between collaborating organizing production and ware-house
machines in manufacturing logistics with heterogeneous fleets

- Smart grid information routing based on * Self organizing fleet management with a
physica| reconﬁguration maximum of ﬂeXIb"Ity and Scalabi”ty

Page 12 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12 SI E M E N S

Dynamic context-based information routing
Coaty 10 Routing

« Coaty agents can have any number of IoSource

IO Routing (Information Source) and IoActor (Information
loContext “A” State #1 Consumer).
» ToSource and IoActor are part of a named shared,
Agent #1 Agent 4 distributed ToContext.

« An IO Routing component manages information routing
for one IoContext based on a rule engine; application-
Agent #2 Agent #5 defined rules determine the association between

w/ loSource w/ loActor .
ToSource and IoActor of the different agents.

Agent #3 Agent #6

w/ loSource w/ loActor

Note: Detailed implementation example available in Coaty 2.0 developer guides

Page 13 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12 SI E M E N S

Dynamic context-based information routing
Coaty 10 Routing

Page 14

IO Routing
loContext “A” State #2
Agent #1 Agent #4
w/ loSource w/ loActor
Agent #2 » Agent #5
w/ loSource w/ loActor

* On IoContext state changes, the IO Routing
Agent #3 Agent #6 component uses Coaty ASSOCIATE event pattern to
w/ loSource w/ loActor
update publication and subscription topics of IoSources
and IoActors of the agents.

Note: Detailed implementation example available in Coaty 2.0 developer guides

Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12 SI E M E N S

Resource allocations in resource networks
Example: AGV transport task assignments

Todays central fleet management

TransportTask (. hastasksin

Workspace
Requester P
0. 1
2
s £
& 8
3 5
5 2
0.
alsigns tasks g «
AGV <
Optimizes entire executes
scenario assigned tasks

Page 15 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Self-organizing fleet management

TransportTask o+ hastasksin 1

> Workspace
Requester P
1
/s
SS"e £
s,esé "
]
° ©
(O]
o
o
0.*
0..* 0.*
— MES : AGV S
monitors &
optimizes

1

Optimizes entire
scenario

1. self-manages task
assignments with
other AGVS

2. executes assigned
tasks

SIEMENS

Coaty — How you get started

Learn how to use Coaty JS

Developer guide

ﬁ
Best practice code examples
and template

Coding style guide

)

Communication protocol
specification

==

Framework API
documentation

Learn how to use CoatySwift

s.]

Tutorial

DEV

Developer guide

E
Best practice code examples
and template

Goaty

https://coaty.l0

https://github.com/coatyio

Framework API
documentation

‘;I

Design rationale

Page 16 Unrestricted | © Siemens 2020 | T RDA 10T | 2020-12

Get in contact with us
coaty.team@gmail.com

SIEMENS

https://coaty.io/
https://github.com/coatyio

